Space-time radial basis function collocation method for one-dimensional advection-diffusion problem
نویسندگان
چکیده مقاله:
The parabolic partial differential equation arises in many application of technologies. In this paper, we propose an approximate method for solution of the heat and advection-diffusion equations using Laguerre-Gaussians radial basis functions (LG-RBFs). The results of numerical experiments are compared with the other radial basis functions and the results of other schemes to confirm the validity of the presented method.
منابع مشابه
Collocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model
In this paper, indirect collocation approach based on compactly supported radial basis function (CSRBF) is applied for solving Volterra's population model. The method reduces the solution of this problem to the solution of a system of algebraic equations. Volterra's model is a non-linear integro-differential equation where the integral term represents the effect of toxin. To solve the pr...
متن کاملCubic B-Spline Collocation Method for One-Dimensional Heat and Advection-Diffusion Equations
Numerical solutions of one-dimensional heat and advection-diffusion equations are obtained by collocation method based on cubic B-spline. Usual finite difference scheme is used for time and space integrations. Cubic B-spline is applied as interpolation function. The stability analysis of the scheme is examined by the Von Neumann approach. The efficiency of the method is illustrated by some test...
متن کاملImplicit Local Radial Basis Function Method for Solving Two-dimensional Time Fractional Diffusion Equations
Based on the recently developed local radial basis function method, we devise an implicit local radial basis function scheme, which is intrinsic mesh-free, for solving time fractional diffusion equations. In this paper the L1 scheme and the local radial basis function method are applied for temporal and spatial discretization, respectively, in which the time-marching iteration is performed impl...
متن کاملMeshfree explicit local radial basis function collocation method for diffusion problems
This paper formulates a simple explicit local version of the classical meshless radial basis function collocation (Kansa) method. The formulation copes with the diffusion equation, applicable in the solution of a broad spectrum of scientific and engineering problems. The method is structured on multiquadrics radial basis functions. Instead of global, the collocation is made locally over a set o...
متن کاملA radial basis function partition of unity collocation method for convection-diffusion equations ⋆
Numerical solution of multi-dimensional PDEs is a challenging problem with respect to computational cost and memory requirements, as well as regarding representation of realistic geometries and adaption to solution features. Meshfree methods such as global radial basis function approximation have been successfully applied to several types of problems. However, due to the dense linear systems th...
متن کاملStable Gaussian radial basis function method for solving Helmholtz equations
Radial basis functions (RBFs) are a powerful tool for approximating the solution of high-dimensional problems. They are often referred to as a meshfree method and can be spectrally accurate. In this paper, we analyze a new stable method for evaluating Gaussian radial basis function interpolants based on the eigenfunction expansion. We develop our approach in two-dimensional spaces for so...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 6 شماره 4
صفحات 426- 437
تاریخ انتشار 2018-10-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023